

 	Home
	News
	
 Manual▾
 	Contents
	01. Introduction
	02. Object Model Overview
	03. Your First AspPDF Application
	04. Drawing
	05. Image and Graphics Objects
	06. Text and Fonts
	07. Tables
	08. Security
	09. Working with Existing PDFs
	10. Interactive Features
	11. Form Creation
	12. Existing Form Fill-in
	13. Barcodes
	14. Document Stitching, Metadata, PDF/A
	15. HTML-to-PDF Conversion
	16. Color Spaces, Patterns and Shadings
	17. PDF-to-Image Conversion
	18. IE-based HTML-to-PDF Conversion
	19. Transparency
	A. Pre-defined Color Names
	B. Special Font Tables

	
 Objects▾
 	Diagram
	PdfAction
	PdfAnnot
	PdfAnnots
	PdfCanvas
	PdfCell
	PdfCells
	PdfColorSpace
	PdfDest
	PdfDocument
	PdfFont
	PdfFonts
	PdfForm
	PdfFunction
	PdfGraphics
	PdfGState
	PdfImage
	PdfManager
	PdfOutline
	PdfOutlineItem
	PdfPage
	PdfPages
	PdfParam
	PdfParamItem
	PdfPreview
	PdfRect
	PdfRow
	PdfRows
	PdfShading
	PdfSignature
	PdfTable

	Demo
	Download/Buy
	Contact

 Chapter 8: Security

 Contents

 8.1 Overview of PDF Security

 8.2 PdfDocument.Encrypt Method

 8.3 Digital Signing

 8.4 Client-Side Signing of Server-Side PDFs

 8.5 PDF-based Secure Mail

 8.1 Overview of PDF Security

 A secure PDF is a document that imposes a set of
 restrictions on this document’s user, such as requiring a password on
 opening, or preventing copying/pasting of the document’s content.

 There are two aspects to the standard (or built-in) PDF security:
 password protection and permission flags.

 8.1.1 Password Protection

 When a secure PDF is created,
 the document author supplies two secret strings:
 the Owner and User passwords.
 Applying these two passwords to the document using an algorithm described in Adobe PDF specifications
 produces a secure document.

 A secure PDF’s content is encrypted with the RC4 algorithm, a stream cipher invented
 by Ron Rivest of RSA Security. Either a 40-bit or 128-bit key can be used. As of AspPDF 2.2,
 the 128-bit Advanced Encryption Standard (AES) cipher is also supported,
 and as of AspPDF 3.5.0.6, 256-bit AES is supported as well.

 To open an encrypted document, the viewer must specify either the user or
 owner password. Specifying the valid user password enables a user to view the
 document, but also makes her subject to the permission flags associated with the document.
 For example, a user may not be able to modify or print the document.
 Specifying the valid owner password gives the user full control over the document:
 not only can she view it, but also change or remove its security settings.

 An empty string is a perfectly valid value for either password.
 There are 4 possible password use scenarios:

 Scenario 1: Both user and owner passwords are non-empty and not equal to
 each other.

 A user must specify a password to open the document. Use this scenario to create
 private password-protected documents with certain usage restrictions imposed,
 such as "no printing". If the two passwords are the same, the owner password
 is ignored and this turns into Scenario 3.

 Scenario 2: The owner password is non-empty, the user password is empty.

 The document can be viewed without specifying a password, but a user is subject
 to permission flags. Use this scenario to create publicly accessible documents
 with certain usage restrictions imposed.

 Scenario 3: The owner password is empty, the user password is non-empty.

 A user must specify a password to open the document. Use this scenario to create
 password-protected documents with no usage restrictions.

 Scenario 4: Both the owner and user passwords are empty.

 Although technically the document is encrypted, there is no true security in it
 as anyone can read the document and modify/remove permission flags. Using this scenario
 is not recommended.

 8.1.2 Permission Flags

 Version 4.0 and earlier of the Adobe Acrobat family of products
 supported 40-bit encryption, and recognized the following four permission
 flags:

	Bit 3: Print the document;
	Bit 4: Modify the document, except by operations controlled by Bit 6;
	Bit 5: Copy/extract content;
	
 Bit 6: Add and change annotations, fill in form fields, and if Bit 4
 is also set, create or modify interactive form fields.

 This version of security specifications is referred to as Revision 2.

 Adobe Acrobat 5.0 and higher allowed both 40-bit and 128-bit encryption,
 and introduced a more granular permission system. The new version
 of security specifications
 is referred to as Revision 3.
 The following permission flags
 are used in Revision 3:

 	Bit 3: Print the document, possibly not at high-resolution depending on Bit 12;
	
 Bit 4: Modify content of the document by operations
 other than those controlled by Bits 6,9, and 11;

	Bit 5: Copy/ extract content by operations other than those controlled by Bit 10;
	
 Bit 6: Add and change annotations, fill in form fields, and if Bit 4
 is also set, create or modify interactive form fields;

	Bit 9: Fill in existing interactive form fields, even if Bit 6 is clear;
	
 Bit 10: Extract text and graphics (in support of accessibility
 to disabled users)

	
 Bit 11: Assemble the document (insert, rotate, or delete pages,
 and create bookmarks or thumbnail images), even if Bit 4 is clear.

	
 Bit 12: Print the document to a representation from
 which a faithful digital copy of the PDF content could be generated.
 When this bit is clear (and Bit 3 is set) printing is limited to
 a low-level representation of the appearance.

 8.2 PdfDocument.Encrypt Method

 To make a PDF document secure with AspPDF,
 all you have to do is call the Encrypt method of the
 PdfDocument object. This method accepts 4 arguments, all optional:
 the owner password, user password, key length, and permission flags.

 The owner and user password arguments are empty strings by default.
 To avoid Scenario 4 described above, you should set at least one
 of the passwords, or both, to non-empty strings. Specifying
 identical strings for both passwords will result in the owner password
 being ignored.

 For RC4 encryption, the key length argument must be set to either 40 or 128. The default value
 is 40 but 128 is strongly recommended. For AES encryption, the value must be -128 (negative 128) or -256 (negative 256).
 The negative sign specifies AES as opposed to RC4. AspPDF version 3.5.0.6 or higher is required for 256-bit encryption.

 The permission flags argument should be set to a bit-wise combination of
 the permission flag constants defined by the AspPDF component.
 These constants are:

 pdfFull = &HFFFFFFFC (all significant bits)

 pdfPrint = &H04 (Bit 3)

 pdfModify = &H08 (Bit 4)

 pdfCopy = &H10 (Bit 5)

 pdfAnnotations = &H20 (Bit 6)

 pdfForm	= &H0100 (Bit 9)

 pdfExtract	= &H0200 (Bit 10)

 pdfAssemble	= &H0400 (Bit 11)

 pdfPrintHigh = &H0800 (Bit 12)

 The default value for the permission flags argument is pdfFull.

 To use the permission flag constants in VBScript, you must include a METADATA
 tag in your .asp file referencing the AspPDF type library (outside
 the <% and %> brackets). In C#, the type name pdfPermissions
 has to be put in front of the constant names.

 <!--METADATA TYPE="TypeLib" UUID="{414FEE4B-2879-4090-957E-423567FFCFC6}"-->

 <%

 ...

 Doc.Encrypt "abc", "xyz", -256, pdfFull And (Not pdfModify)

 ...

 %>

 ...

 objDoc.Encrypt("abc", "xyz", -256, pdfPermissions.pdfFull & (~pdfPermissions.pdfModify));

 ...

 The code sample 08_encrypt.asp/.aspx (not shown here) is almost identical to
 the Hello World
 sample used in Chapter 3, except that it also calls the Encrypt
 method. The string "abc" is used for the owner password, "xyz" for the
 user password, -256 for 256-bit AES encryption, and no-printing/no-changing
 for the permission flags.

 Click the links below to run this code sample:

 http://localhost/asppdf/manual_08/08_encrypt.asp
 http://localhost/asppdf/manual_08/08_encrypt.aspx

 You will be prompted to enter a password when opening this document in Acrobat Reader.
 You can either enter abc or xyz.
 Adobe Reader will show a padlock icon on the left-hand side indicating that the document is encrypted.

 If you click on the padlock icon and select Permission Details, the
 Document Security dialog box comes up showing
 the permission details of the document:

 8.3 Digital Signing

 A digital signature protects a document's integrity and
 provides proof of the signer's identity.
 AspPDF is capable of adding a X.509 certificate-based
 digital signature to a PDF document in PKCS#7 format
 via the Sign method of the PdfDocument object.

 8.3.1 AspEncrypt

 To create a digitally signed document, or sign an existing
 PDF, AspPDF has to be used in tandem with another Persits Software
 component, AspEncrypt. A free 30-day evaluation
 version of this component can be downloaded from the
 AspEncrypt.com web site.

 AspEncrypt is a comprehensive cryptographic engine which, among
 other things, offers PKCS#7 digital signing functionality
 and provides programmable access to X.509 certificates.
 Using AspEncrypt, a signer certificate can be retrieved from a certificate store or .PFX file (also known as a PKCS#12 file).
 Click here
 for more information about AspEncrypt's certificate management functionality.

 IMPORTANT: You must use Version 2.2.0.2 or higher of AspEncrypt
 to produce signed PDF documents. If you are currently running
 an older version, download your free upgrade here.

 8.3.2 Sign Method

 The Sign method expects an initialized instance of CryptoMessage,
 an AspEncrypt object responsible for PKCS#7 digital signing.
 The CryptoMessage object must be associated with an instance of CryptoCert,
 another AspEncrypt object representing a signer certificate.
 CryptoCert objects are obtainable from certificate stores (represented by
 the CryptoStore object).

 The Sign method also accepts the signer name, reason for signing, and location
 arguments (the first one is required, the other two are optional),
 and also an optional parameter string or parameter object controlling the
 visibility and location
 of the signature field within the document.

 The following code sample adds a signature to a PDF document based
 on a certificate in .pfx (PKCS#12) format:

 ...

 Set CM = Server.CreateObject("Persits.CryptoManager")

 Set Context = CM.OpenContext("", True)

 Set Msg = Context.CreateMessage

 Set Store = CM.OpenStoreFromPFX("c:\mycert.pfx", "mypassword")

 Set Cert = Store.Certificates(1)

 Msg.SetSignerCert Cert

 Doc.Sign Msg, "John Smith", "I created this document.", "New York, NY"

 ...

 If a signer certificate is located in a system certificate store (as opposed
 to .pfx), the code fragment responsible for obtaining a CryptoCert
 object would look as follows:

 ...

 Set Store = CM.OpenStore("MY", True) ' or False

 Set Cert = Store.Certificates("112B 0783 8D43 0887 4EDF 015B CF4E E109")

 ...

 This fragment opens the "MY" store (containing personal certificates)
 located in the HKEY_LOCAL_MACHINE section of the registry
 (HKEY_CURRENT_USER would be used if False were passed to OpenStore),
 and obtains a certificate from the store by its serial number.

 The code sample 08_sign.asp (not shown here) is yet another version of our Hello World
 application. It generates documents that are both encrypted and digitally signed.
 Before running this code sample, make sure AspEncrypt (the latest version)
 is installed, and the virtual directory /AspPDF
 has the Application Protection option set to low.

 Click the link below to run this code sample:

 http://localhost/asppdf/manual_08/08_sign.asp

 NOTE: A digitally signed document can only be saved to disk (via the Save method).
 Saving to memory or an HTTP stream cannot be used once Sign
 is called, and an attempt to call SaveToMemory or SaveHttp will result
 in an error exception.

 8.3.3 Visible Signatures

 By default, the Sign method creates an invisible signature.
 Using the last optional argument of the Sign method, it is possible
 to specify a page and location within that page where the signature
 icon is to appear.

 The following code fragment draws a signature icon in the upper-left
 corner of the first page of the document (middle arguments omitted for brevity):

 Doc.Sign Msg, ..., "visible=true;x=10,y=750;width=20;height=20;pageindex=1"

 It is also possible to change the default appearance of a signature
 by drawing on the canvas of a PdfAnnot object
 returned by the Sign method. Annotations are described in detail
 in Chapter 10.

 8.3.4 Signature Validation

 AspPDF's digital signature functionality would not be complete without
 a way to verify an existing signature in a document.

 Signature verification is implemented via the VerifySignature method
 of the PdfDocument object.
 VerifySignature can only be called on an instance of PdfDocument
 created via OpenDocument (the latter
 is described in detail in Chapter 9.)
 VerifySignature expects an empty CryptoMessage object as an argument.

 VerifySignature returns Nothing if no PKCS#7 signatures
 are found in the document. Otherwise, it returns an instance
 of the PdfSignature object
 encapsulating various property of the signature, including
 its validation status (valid/invalid), signer name, reason for signing,
 location, and other information. If a document contains multiple signatures (such as, when
 an already signed document was signed again), the VerifySignature method
 validates and returns the one that covers the largest portion of the document,
 which is usually the latest signature.

 The following code fragment opens a PDF document from a file,
 and attempts to validate a signature, if one is present:

 Set CM = Server.CreateObject("Persits.CryptoManager")

 Set Context = CM.OpenContext("", False)

 Set Msg = Context.CreateMessage

 Set Doc = Pdf.OpenDocument("c:\somefile.pdf")

 Set Sig = Doc.VerifySignature(Msg)

 If Sig Is Nothing Then

 Response.Write "No signature found."

 Else

 Response.Write "Status = " & Sig.Status & "
"

 Response.Write "Name = " & Sig.Name & "
"

 Response.Write "Reason = " & Sig.Reason & "
"

 Response.Write "Contents = " & Sig.Contents & "
"

 End If

 8.4 Client-Side Signing of Server-Side PDFs

 The PdfDocument.Sign method described in the previous section requires
 access to both the PDF document being signed and the private key of the certificate
 used for signing. In most cases, this means the signer certificate has to be transferred to the
 server, which may be undesirable as the security of the private key is jeopardized.

 Version 3.4 of AspPDF introduces a new, secure way of signing PDF documents in which
 the document being signed never leaves the server, while the signer certificate never leaves
 the client machine: the hash value and signature do all the traveling.
 The actual signing takes place on the client workstation using Version 2.9+
 of the XEncrypt ActiveX control (included with the Persits AspEncrypt component.) Since an ActiveX control is involved,
 the user is required to run Internet Explorer on Windows.

 From the user's prospective, the entire signing process can be completed with a single button click, but under the hood
 there are three distinct steps involved: server-side pre-signing, client-side signing, and server-side signature injection.
 Below is the detailed description of these three steps:

 Step 1: Server-Side Pre-Signing

 During pre-signing, a new document is created which looks almost completely like a real signed document but the "signature"
 embedded in it just contains a bunch of 0's. This sequence of 0's is merely a placeholder which will eventually contain the real
 signature (see Step 3). Also the SHA hash value of the appropriate parts of the document is computed. This hash value will be transferred to the
 client workstation for signing in Step 2.

 Pre-signing is performed by calling the PdfDocument.Sign method with the first argument (CryptoMessage object) simply set to Nothing (null),
 followed by a call to PdfDocument.Save to create the pre-signed document.
 The parameter BinarySize must be specified when calling Sign. This parameter specifies the size of the signature placeholder.
 The value of 5000 is usually sufficient but may need to be higher in some cases. The code sample below performs signature size validation
 and alerts the user if the space allocated for the signature is insufficient.

 The SHA hash value of the relevant parts of the document along with signature location and size are returned by the property PdfDocument.SignatureInfo
 in the form of a comma-separated list. The 1st item on the list is a HEX-encoded SHA value. The 2nd item is the signature location
 within the document (this number is used in Step 3.) The 3rd item is the signature placeholder's size which matches the BinarySize parameter.
 The SignatureInfo property can only be called after the Save method has been called. For example:

 Set PDF = Server.CreateObject("Persits.PDF")

 Set Doc = PDF.OpenDocument(Server.MapPath("DocToSign.pdf"))

 Doc.Sign Nothing, Name, Reason, Location", "BinarySize=5000; visible=true; x=10, y=700; width=50; height=50; pageindex=1;"

 Doc.Save Server.MapPath("files\" & Session.SessionID & ".pdf"), false

 Response.Write(Doc.SignatureInfo)

 This code will display a value similar to this:

 B7F2211A4D83D624B2C9DF7277C222BA3931E4C8,135676,5000

 Step 2: Client-Side Signing

 The hash value obtained in Step 1 is transferred to the client workstation for signing with the user's personal certificate.
 The actual signing is performed with the help of Persits XEncrypt, the client-side ActiveX control included with Persits AspEncrypt.
 Version 2.9+ of XEncrypt implements the method CryptoMessage.SignHash which produces the PKCS#7 signature
 of a SHA hash value. This ActiveX control is also capable of presenting the user with a list of certificates
 to choose from in case the user has more than one on his/her workstation. Since an ActiveX control is involved in this operation,
 the Microsoft IE browser on Windows is required.

 The following client-side JavaScript code snippet performs client-side signing of a hash value:

 var Context = XEncrypt.OpenContext('', false);

 var Msg = Context.CreateMessage(true);

 Msg.SetSignerCert(Cert);

 var HashBlob = XEncrypt.CreateBlob();

 HashBlob.Hex = Hash;

 var PKCS7Blob = Msg.SignHash(HashBlob);

 txtSignature = PKCS7Blob.Hex;

 Step 3: Server-Side Signature Injection

 Finally, the PKCS#7 signature generated by the CryptoMessage.SignHash method in Step 2 is transferred
 to the server and injected into the pre-signed file created during Step 1.
 This operation is performed using the PdfManager.InjectTextIntoFile method.
 This method expects three arguments: the path to the file, the text being injected (Hex-encoded PKCS#7 signature in our case)
 and the location within the file where text is to be written. The signature location
 is obtained in Step 1 via the PdfDocument.SignatureInfo property. The InjectTextIntoFile method returns the filename (without the path)
 of the file being injected.

 The following code snippet demonstrates this final step:

 Set PDF = Server.CreateObject("Persits.PDF")

 strFilename = PDF.InjectTextIntoFile(Request("Path"), Request("Signature"), Request("Location"))

 Response.Write strFilename

 The following code sample implements the three-step process described above
 via two AJAX calls: the first AJAX call invokes the sever-side pre-signing script demo_clientsign_obtainhash.asp/.aspx
 and transfers the hash value (along with other useful information) to the user workstation for signing.
 After the hash value is signed, a 2nd AJAX call transfers the PKCS#7 signature (along with other useful information)
 to the server and invokes the signature injection script demo_clientsign_injectsignature.asp/.aspx.

 In addition to the hash value and signature, the scripts pass around the signature location, signature size and the full
 path of the pre-signed PDF file. The signature size value is used by the client-side JavaScript to ensure the actual signature size
 does not exceed the size of the signature placeholder, and alerts the user if it does. The signature location and file path
 are sent to the client side via the 1st AJAX call merely to be sent back via the 2nd AJAX call -- they are not used by the client-side JavaScript
 for any other purpose.

 Also, in case the user does not have a valid certificate for signing, or chooses to cancel the signing operation by not
 selecting a certificate from the list, the 2nd AJAX call contains a "delete" command which causes the pre-signed PDF file
 to be deleted since there is no point in preserving a file with an incomplete (and invalid) signature.

 demo_clientsign_ajax.js:

 var xmlHttp;

 var txtHashEtc, txtSignature;

 var strObtainHashFilename = 'demo_clientsign_obtainhash.asp';

 var strInjectSignatureFilename = 'demo_clientsign_injectsignature.asp';

 function GetXmlObject()

 {

 var xmlHttp = null;

 try

 {

 // Firefox, Opera 8.0+, Safari

 xmlHttp=new XMLHttpRequest();

 }

 catch (e)

 {

 // Internet Explorer

 try

 {

 xmlHttp=new ActiveXObject('Msxml2.XMLHTTP');

 }

 catch (e)

 {

 xmlHttp=new ActiveXObject('Microsoft.XMLHTTP');

 }

 }

 return xmlHttp;

 }

 function SetASPX()

 {

 strObtainHashFilename = 'demo_clientsign_obtainhash.aspx';

 strInjectSignatureFilename = 'demo_clientsign_injectsignature.aspx';

 }

 function Sign()

 {

 xmlHttp = GetXmlObject();

 if(xmlHttp==null)

 {

 alert ('Your browser does not support AJAX!');

 return;

 }

 xmlHttp.onreadystatechange = stateChanged;

 // STEP1: Send signature attributes to server, obtain hash

 if(document.forms[0].txtName.value == '')

 {

 alert('Name must be specified.');

 document.forms[0].txtName.focus();

 return;

 }

 if(document.forms[0].txtReason.value == '')

 {

 alert('Reason for signing must be specified.');

 document.forms[0].txtReason.focus();

 return;

 }

 if(document.forms[0].txtLocation.value == '')

 {

 alert('Location must be specified.');

 document.forms[0].txtLocation.focus();

 return;

 }

 var strParams;

 strParams = 'name=' + encodeURIComponent(document.forms[0].txtName.value);

 strParams += '&reason=' + encodeURIComponent(document.forms[0].txtReason.value);

 strParams += '&location=' + encodeURIComponent(document.forms[0].txtLocation.value);

 strParams += '&rnd=' + Math.random(); // to prevent caching

 xmlHttp.open('GET', strObtainHashFilename + '?' + strParams, true);

 xmlHttp.send(null);

 }

 function stateChanged()

 {

 if(xmlHttp.readyState == 4)

 {

 var strResponse;

 strResponse = xmlHttp.responseText;

 // check for run-time errors that may occur in the server-side script

 if(strResponse.search('error') != -1)

 {

 alert('An error occurred while obtaining hash value: ' + strResponse);

 return;

 }

 // Save hash, location and path

 txtHashEtc = strResponse;

 // Invoke signing function

 setTimeout(ComputeSignature, 0);

 }

 }

 // Uses XEncrypt ActiveX control to sign the hash

 function ComputeSignature()

 {

 // Split signature info into hash, signature location, size and file path

 var SigInfo = txtHashEtc.split(',');

 var Hash = SigInfo[0];

 var Location = SigInfo[1];

 var Size = SigInfo[2];

 var Path = SigInfo[3];

 try

 {

 // Open "MY" certificate store which contains client certs

 var Store = XEncrypt.OpenStore('MY', false);

 // Does the store contain certificates?

 var Count = Store.Certificates.Count;

 if(Count == 0)

 {

 alert('You have no certificates.');

 DeletePDFFile(Path);

 return;

 }

 // If store contains more than one, enable user to pick one

 var Cert = null;

 if(Count > 1)

 {

 Cert = XEncrypt.PickCertificate(Store, 4+8+16,

 'Select signer certificate',

 'This certificate\'s private key will be used for signing');

 if(Cert == null)

 {

 DeletePDFFile(Path);

 return;

 }

 }

 else

 {

 // otherwise just pick that only one cert

 Cert = Store.Certificates(1)

 }

 // Make sure the cert has a private key associated with it

 if(!Cert.PrivateKeyExists)

 {

 alert('This certificate has no private key associated with it.');

 DeletePDFFile(Path);

 return;

 }

 var Context = XEncrypt.OpenContext('', false);

 var Msg = Context.CreateMessage(true);

 Msg.SetSignerCert(Cert);

 var HashBlob = XEncrypt.CreateBlob();

 HashBlob.Hex = Hash;

 var PKCS7Blob = Msg.SignHash(HashBlob);

 if(PKCS7Blob.Length > Size)

 {

 alert('Signature size exceeds the space allocated for it. Contact technical support.');

 DeletePDFFile(Path);

 return;

 }

 txtSignature = PKCS7Blob.Hex;

 }

 catch(err)

 {

 alert('An error occurred during digital signing: ' + err.message);

 DeletePDFFile(Path);

 return;

 }

 // Send signature and other info to server

 xmlHttp.onreadystatechange = stateChanged2;

 var strParams;

 strParams = 'path=' + encodeURIComponent(Path);

 strParams += '&location=' + encodeURIComponent(Location);

 strParams += '&signature=' + encodeURIComponent(txtSignature);

 // Use POST method as the signature is a long string

 xmlHttp.open('POST', strInjectSignatureFilename, true);

 xmlHttp.setRequestHeader('Content-type', 'application/x-www-form-urlencoded');

 xmlHttp.send(strParams);

 }

 function stateChanged2()

 {

 if(xmlHttp.readyState == 4)

 {

 var strResponse;

 strResponse = xmlHttp.responseText;

 // check for run-time errors that may occur in the server-side script

 if(strResponse.search('error') != -1)

 {

 alert('An error occurred while comlpeting the signing: ' + strResponse);

 return;

 }

 document.getElementById('divLink').innerHTML = 'Success! Download the signed file from ' + strResponse + '';

 }

 }

 function DeletePDFFile(Path)

 {

 xmlHttp.onreadystatechange = stateChanged3;

 var strParams;

 strParams = 'delete=1&path=' + encodeURIComponent(Path);

 strParams += '&rnd=' + Math.random(); // to prevent caching

 xmlHttp.open('GET', strInjectSignatureFilename + '?' + strParams, true);

 xmlHttp.send(null);

 }

 function stateChanged3()

 {

 if(xmlHttp.readyState == 4)

 {

 var strResponse;

 strResponse = xmlHttp.responseText;

 // check for run-time errors that may occur in the server-side script

 if(strResponse.search('error') != -1)

 {

 alert('An error occurred while deleting the temporary file: ' + strResponse);

 return;

 }

 }

 }

 demo_clientsign.asp:

 <script src="demo_clientsign_ajax.js"></script>

 <!-- Invisible XEncrypt ActiveX control which performs client-side signing-->

 <OBJECT

 classid="CLSID:F9463571-87CB-4A90-A1AC-2284B7F5AF4E"

 codeBase="aspencrypt.dll#VERSION=2,9,0,0"

 id="XEncrypt">

 </OBJECT>

 <form name="SigningForm">

 <table border="1">

 <tr><td>Name:</td><td><input type="text" name="txtName" size="40"></td></tr>

 <tr><td>Reason for signing:</td><td><input type="text" name="txtReason" size="40"></td></tr>

 <tr><td>Location:</td><td><input type="text" name="txtLocation" size="40"></td></tr>

 <tr><td colspan="2" align="center">

 <input type="button" name="TheButton" value="Sign this server-side PDF with your client certificate" onclick="Sign();">

 </td></tr>

 </table>

 <P>

 <div id="divLink"></div>

 </form>

 demo_clientsign_obtainhash.asp:

 Set PDF = Server.CreateObject("Persits.PDF")

 Set Doc = PDF.OpenDocument(Server.MapPath("DocToSign.pdf"))

 ' Pre-sign: Nothing is passed as the first argument to Sign method

 Set Annot = Doc.Sign(Nothing, Request("name"), Request("reason"), Request("location"), _

 "BinarySize=5000; visible=true; x=10, y=700; width=50; height=50; pageindex=1; print=true")

 ' Give the signature the appearance of an image

 Set Image = Doc.OpenImage(Server.MapPath("signature.png"))

 Set Graph = Doc.CreateGraphics("Left=0; Bottom=0; Right=53; Top=53")

 Graph.Canvas.DrawImage Image, "x=0; y=0"

 Annot.Graphics(0) = Graph

 Doc.Save Server.MapPath("files\" & Session.SessionID & ".pdf"), false

 Response.Write(Doc.SignatureInfo)

 Response.Write("," & Doc.Path)

 demo_clientsign_injectsignature.asp:

 If Request("delete") = 1 Then

 Set fs = CreateObject("Scripting.FileSystemObject")

 fs.DeleteFile Request("Path")

 Else

 Set PDF = Server.CreateObject("Persits.PDF")

 strFilename = PDF.InjectTextIntoFile(Request("Path"), Request("Signature"), Request("Location"))
 Response.Write strFilename

 End If

 demo_clientsign.aspx:

 <script src="demo_clientsign_ajax.js"></script>

 <OBJECT

 classid="CLSID:F9463571-87CB-4A90-A1AC-2284B7F5AF4E"

 codeBase="aspencrypt.dll#VERSION=2,9,0,0"

 id="XEncrypt">

 </OBJECT>

 <form id="SigningForm" runat="server">

 <table border="1">

 <tr><td>Name:</td><td><asp:textbox runat="server" id="txtName" size="40"/></td></tr>

 <tr><td>Reason for signing:</td><td><asp:textbox runat="server" id="txtReason" size="40"/></td></tr>

 <tr><td>Location:</td><td><asp:textbox runat="server" id="txtLocation" size="40"/></td></tr>

 <tr><td colspan="2" align="center">

 <asp:button runat="server" id="TheButton" Text="Sign this server-side PDF" onclientclick="SetASPX(); Sign(); return false;"/>

 </td></tr>

 </table>

 <p>

 <asp:label runat="server" id="divLink"/>

 </form>

 demo_clientsign_obtainhash.aspx:

 <%@ Import Namespace="System.Web" %>

 <%@ Import Namespace="System.Reflection" %>

 <%@ Import Namespace="ASPPDFLib" %>

 <script runat="server" LANGUAGE="C#">

 void Page_Load(Object Source, EventArgs E)

 {

 // Pre-signs the PDF document:

 // - Creates a placeholder inside it to contain the signature

 // - Obtains the hash value of the signable area, as well as the signature location

 IPdfManager objPDF = new PdfManager();

 IPdfDocument objDoc = objPDF.OpenDocument(Server.MapPath("DocToSign.pdf"), Missing.Value);

 // Pre-sign: null is passed as the first argument to Sign method

 IPdfAnnot objAnnot = objDoc.Sign(null, Request["name"], Request["reason"], Request["location"],

 "BinarySize=5000; visible=true; x=10, y=700; width=50; height=50; pageindex=1; print=true");

 // Give the signature the appearance of an image

 IPdfImage objImage = objDoc.OpenImage(Server.MapPath("signature.png"), Missing.Value);

 IPdfGraphics objGraph = objDoc.CreateGraphics("Left=0; Bottom=0; Right=53; Top=53");

 objGraph.Canvas.DrawImage(objImage, "x=0; y=0");

 objAnnot.set_Graphics(0, Missing.Value, objGraph);

 objDoc.Save(Server.MapPath("files\\" + Session.SessionID + ".pdf"), false);

 Response.Write(objDoc.SignatureInfo);

 Response.Write("," + objDoc.Path);

 }

 </script>

 demo_clientsign_injectsignature.aspx:

 <%@ Import Namespace="System.Web" %>

 <%@ Import Namespace="System.Reflection" %>

 <%@ Import Namespace="System.IO" %>

 <%@ Import Namespace="ASPPDFLib" %>

 <script runat="server" LANGUAGE="C#">

 void Page_Load(Object Source, EventArgs E)

 {

 if(Request["delete"] != null)

 {

 File.Delete(Request["Path"]);

 }

 else

 {

 IPdfManager objPDF = new PdfManager();

 string strFilename = objPDF.InjectTextIntoFile(Request["Path"], Request["Signature"], int.Parse(Request["Location"]));

 Response.Write(strFilename);

 }

 }

 </script>

 To test this application, click on the link below to go to Live Demo #10b.

 To avoid an Access is Denied error during signing, run IE as Administrator or add https://support.persits.com to the list
 of Trusted sites as shown on the following image.

 Live Demo #10b: https://www.support.persits.com/pdf/demo_clientsign.asp

 8.5 PDF-based Secure Mail

 Some web applications require that the users be periodically sent sensitive information via email securely.
 Persits Software, Inc., the maker of AspPDF and AspPDF.NET, offers certificate-based secure email functionality via
 the components AspEmail and AspEncrypt.

 In order to receive and decrypt secure email, the recipient needs to have acquired a personal
 certificate from a certification authority such as Verisign or Thawte. The public-key portion
 of the certificate needs to be exported to a file and placed on the web sever generating the secure email.
 Also, the recipient must use stand-alone S/MIME-enabled email software to decrypt and read
 the messages such as Outlook, Outlook Express, etc. Web-based email services such as gmail,
 hotmail, etc. cannot be used.

 PDF format offers an alternative to certificate-based email in which the secure content is embedded in a
 password-protected PDF document and sent to the user as an attachment via regular, unencrypted, email.
 Upon the receipt of the message, the user opens the attachment with Acrobat Reader and
 enters his password to view the content.

 PDF is a great vehicle for delivering secure email for the following reasons:

 	it supports strong 128-bit password-based encryption;
	it provides a means for file attachments via special interactive objects called annotations described in Chapter 10.
	it is platform-independent;
	it does not require special software other than a PDF viewer such as Acrobat Reader;
	it does not require a digital certificate;
	it can be used with any stand-alone and web-based email reader.

 PDF-based secure message functionality is demonstrated by the following AspPDF live demo:

 http://support.persits.com/pdf/demo_email.asp

 Other Products

 AspUpload

 AspEmail

 AspEmail.NET

 AspJpeg

 AspJpeg.NET

 AspHEIF

 AspPDF.NET

 AspEncrypt

 AspGrid

 AspUser

 © 1997 - 2024 Persits Software, Inc. All rights reserved.

